Wednesday, January 21, 2009

DNA Molecular Biology Visualizations - Wrapping And Replication


...

DNA Molecular Biology Visualizations - Wrapping And Replication

Pharmacology of Colchicine

Colchicine, a water-soluble alkaloid found in the autumn crocus, blocks or suppresses cell division by inhibiting mitosis, the division of a cell's nucleus. Specifically, it inhibits the development of spindles as the nuclei are dividing. Normally, the cell would use its spindle fibers to line up its chromosomes, make a copy of them, and divide into two new cells with each daughter cell having a single set of chromosomes. With colchicine present, the spindle fibers don't form, and so the cell can't move its chromosomes around. The cell may end up copying some or all of the chromosomes anyway, but can't parcel them out into new cells, and so it never divides.
Because
cancer cells divide much more rapidly than normal cells, cancers are more susceptible to being poisoned by mitotic inhibitors such as colchicine, paclitaxel, and the Vinca alkaloids.
However, colchicine has proven to have a fairly narrow range of effectiveness as a chemotherapy agent, so its only FDA-approved use is to treat gout (it is one of the active ingredients of ColBenemid, anti-gout tablets marketed by Merck & Co.), though it is also occasionally used in veterinary medicine to treat cancers in some animals. It is also used as an antimitotic agent in cancer research involving
cell cultures.
Gout is an illness caused by faulty uric acid
metabolism in which excess uric acid is turned into crystals of sodium urate, which are then deposited in the joints (most often in the big toe), causing inflammation and pain. Researchers aren't sure exactly how colchicine works against gout, but it does seem to reduce the frequency of severe attacks and relieves residual pain.
As far as side effects go, colchicine can cause a temporary reduction in the number of
leukocytes (white blood cells) in the bloodstream; afterward, the leukocyte count can rebound to abnormally high levels. Colchicine also causes teratogenic birth defects in lab animals, and so pregnant women with gout should not use colchicine-containing drugs.
Colchicine poisoning resembles arsenic poisoning; the symptoms (which, because it is a mitotic poison, occur 2 to 5 hours after the toxic dose has been ingested) include burning in the mouth and throat, diarrhea, stomach pain, vomiting, and kidney failure. Death from respiratory failure often follows. A specific antidote doesn't exist, so treatment typically involves giving the victim
activated charcoal or pumping the stomach.
...



Colchicine


Colchicine is a toxic natural product and secondary metabolite, originally extracted from plants of the genus Colchicum (Autumn crocus, Colchicum autumnale, also known as the "Meadow saffron"). Originally used to treat rheumatic complaints and especially gout, it was also prescribed for its cathartic and emetic effects. Its present medicinal use is mainly in the treatment of gout; as well, it is being investigated for its potential use as an anti-cancer drug. It can also be used as initial treatment for pericarditis and preventing recurrences of the condition. In neurons, axoplasmic transport is disrupted by colchicine.


History


Colchicum extract was first described as a treatment for gout in De Materia Medica by Pedanius Dioscorides in the first century CE. Colchicine, an alkaloid, was first isolated in 1820 by the two French chemists P.S. Pelletier and J. Caventon.[1] The alkaloid was later identified as a tricyclic alkaloid, and its pain-relieving and anti-inflammatory effects for gout were linked to its ability to bind with tubulin.

...

Pharmacology
Biological function
Colchicine inhibits microtubule polymerization by binding to tubulin, one of the main constituents of microtubules. Availability of tubulin is essential to mitosis, and therefore colchicine effectively functions as a "mitotic poison" or spindle poison.[2] Since one of the defining characteristics of cancer cells is a significantly increased rate of mitosis, this means that cancer cells are significantly more vulnerable to colchicine poisoning than are normal cells. However, the therapeutic value of colchicine against cancer is (as is typical with chemotherapy agents) limited by its toxicity against normal cells.
Apart from inhibiting mitosis, a process heavily dependent on cytoskeletal changes, colchicine also inhibits neutrophil motility and activity, leading to a net anti-inflammatory effect. Colchicine also inhibits uric acid (urate) crystal deposition, which is enhanced by a low pH in the tissues, probably by inhibiting oxidation of glucose and subsequent lactic acid production in leukocytes. The inhibition of uric acid crystals is a vital aspect on the mechanism of gout treatment.
Colchicine as medicine
In the United States colchicine is FDA approved for the treatment of gout and also for familial Mediterranean fever, secondary amyloidosis(AA), and scleroderma. It is also used as an anti-inflammatory agent for long-term treatment of Behçet's disease.
The Australian biotechnology company Giaconda has developed a combination therapy to treat constipation-predominant irritable bowel syndrome which combines colchicine with the anti-inflammatory drug olsalazine.
The British drug development company Angiogene is developing a prodrug of colchicine, ZD6126(also known as ANG453) as a treatment for cancer.
Colchicine has a relatively low therapeutic index.
Colchicine is "used widely" off-label by naturopaths for a number of treatments, including the treatment of back pain.

Side effects
Side effects include gastro-intestinal upset and neutropenia. High doses can also damage bone marrow and lead to anaemia. Note that all of these side effects can result from hyper-inhibition of mitosis.

Toxicity
Colchicine poisoning has been compared to arsenic poisoning: symptoms start 2 to 5 hours after the toxic dose has been ingested and include burning in the mouth and throat, fever, vomiting, diarrhea, abdominal pain and kidney failure. These symptoms may set in as many as 24 hours after the exposure. Onset of multiple-system organ failure may occur within 24 to 72 hours. This includes hypovolemic shock due to extreme vascular damage and fluid loss through the GI tract, which may result in death. Additionally, sufferers may experience kidney damage resulting in low urine output and bloody urine; low white blood cell counts (persisting for several days); anemia; muscular weakness; and respiratory failure. Recovery may begin within 6 to 8 days. There is no specific antidote for colchicine, although various treatments do exist.

Botanical use
Since chromosome segregation is driven by microtubules, colchicine is also used for inducing polyploidy in plant cells during cellular division by inhibiting chromosome segregation during meiosis; half the resulting gametes therefore contain no chromosomes, while the other half contain double the usual number of chromosomes (i.e., diploid instead of haploid as gametes usually are), and lead to embryos with double the usual number of chromosomes (i.e. tetraploid instead of diploid). While this would be fatal in animal cells, in plant cells it is not only usually well tolerated, but in fact frequently results in plants which are larger, hardier, faster growing, and in general more desirable than the normally diploid parents; for this reason, this type of genetic manipulation is frequently used in breeding plants commercially. In addition, when such a tetraploid plant is crossed with a diploid plant, the triploid offspring will be sterile, which may be commercially useful in itself by requiring growers to buy seed from the supplier, but also can often be induced to create a "seedless" fruit if pollinated (usually the triploid will also not produce pollen, therefore a diploid parent is needed to provide the pollen). This is the method used to create seedless watermelons, for instance. On the other hand, colchicine's ability to induce polyploidy can be exploited to render infertile hybrids fertile, as is done when breeding triticale from wheat and rye. Wheat is typically tetraploid and rye diploid, with the triploid hybrid infertile. Treatment with colchicine of triploid triticale gives fertile hexaploid triticale.
When used to induce polyploidy in plants, colchicine is usually applied to the plant as a cream. It has to be applied to a growth point of the plant, such as an apical tip, shoot or sucker. Seeds can be presoaked in a colchicine solution before planting. As colchicine is so dangerous, it is worth noting that doubling of chromosome numbers can occur spontaneously in nature, and not infrequently. The best place to look is in regenerating tissue. One way to induce it is to chop off the tops of plants and carefully examine the lateral shoots and suckers to see if any look different.

The Design Of The Sperm


...

That's HoW you were created.

Jesus Lizard


...

Jesus lizard walking on the water

6 Degrees Warmer : Mass Extinction???


...

If the world warms by six degrees, oceans will turn into marine wastelands and natural disasters become common events.

Global Warming


...

Global warming could do more than just melt polar ice. It could change our maps, and displace people from cities and tropical islands.

Transgenic Organism

Pemanfaatan Organisme Transgenik dan Produk yang Dihasilkannya

Teknologi DNA rekombinan atau rekayasa genetika telah melahirkan revolusi baru dalam berbagai bidang kehidupan manusia, yang dikenal sebagai revolusi gen. Produk teknologi tersebut berupa organisme transgenik atau organisme hasil modifikasi genetik (OHMG), yang dalam bahasa Inggris disebut dengan genetically modified organism (GMO). Namun, sering kali pula aplikasi teknologi DNA rekombinan bukan berupa pemanfaatan langsung organisme transgeniknya, melainkan produk yang dihasilkan oleh organisme transgenik. Dewasa ini cukup banyak organisme transgenik atau pun produknya yang dikenal oleh kalangan masyarakat luas. Beberapa di antaranya bahkan telah digunakan untuk memenuhi kebutuhan hidup sehari-hari. Berikut ini akan dikemukakan beberapa contoh pemanfaatan organisme transgenik dan produk yang dihasilkannya dalam berbagai bidang kehidupan manusia.


...

1. Pertanian

Aplikasi teknologi DNA rekombinan di bidang pertanian berkembang pesat dengan dimungkinkannya transfer gen asing ke dalam tanaman dengan bantuan bakteri Agrobacterium tumefaciens (lihat Bab XI). Melalui cara ini telah berhasil diperoleh sejumlah tanaman transgenik seperti tomat dan tembakau dengan sifat-sifat yang diinginkan, misalnya perlambatan kematangan buah dan resistensi terhadap hama dan penyakit tertentu.

Pada tahun 1996 luas areal untuk tanaman transgenik di seluruh dunia telah mencapai 1,7 ha, dan tiga tahun kemudian meningkat menjadi hampir 40 juta ha. Negara- negara yang melakukan penanaman tersebut antara lain Amerika Serikat (28,7 juta ha), Argentina (6,7 juta ha), Kanada (4 juta ha), Cina (0,3 juta ha), Australia (0,1 juta ha), dan Afrika Selatan (0,1 juta ha). Indonesia sendiri pada tahun 1999 telah mengimpor produk pertanian tanaman pangan transgenik berupa kedelai sebanyak 1,09 juta ton, bungkil kedelai 780.000 ton, dan jagung 687.000 ton. Pengembangan tanaman transgenik di Indonesia meliputi jagung (Jawa Tengah), kapas (Jawa Tengah dan Sulawesi Selatan), kedelai, kentang, dan padi (Jawa Tengah). Sementara itu, tanaman transgenik lainnya yang masih dalam tahap penelitian di Indonesia adalah kacang tanah, kakao, tebu, tembakau, dan ubi jalar.

Di bidang peternakan hampir seluruh faktor produksi telah tersentuh oleh teknologi DNA rekombinan, misalnya penurunan morbiditas penyakit ternak serta perbaikan kualitas pakan dan bibit. Vaksin-vaksin untuk penyakit mulut dan kuku pada sapi, rabies pada anjing, blue tongue pada domba, white-diarrhea pada babi, dan fish-fibrosis pada ikan telah diproduksi menggunakan teknologi DNA rekombinan. Di samping itu, juga telah dihasilkan hormon pertumbuhan untuk sapi (recombinant bovine somatotropine atau rBST), babi (recombinant porcine somatotropine atau rPST), dan ayam (chicken growth hormone). Penemuan ternak transgenik yang paling menggegerkan dunia adalah ketika keberhasilan kloning domba Dolly diumumkan pada tanggal 23 Februari 1997.

Pada dasarnya rekayasa genetika di bidang pertanian bertujuan untuk menciptakan ketahanan pangan suatu negara dengan cara meningkatkan produksi, kualitas, dan upaya penanganan pascapanen serta prosesing hasil pertanian. Peningkatkan produksi pangan melalui revolusi gen ini ternyata memperlihatkan hasil yang jauh melampaui produksi pangan yang dicapai dalam era revolusi hijau. Di samping itu, kualitas gizi serta daya simpan produk pertanian juga dapat ditingkatkan sehingga secara ekonomi memberikan keuntungan yang cukup nyata. Adapun dampak positif yang sebenarnya diharapkan akan menyertai penemuan produk pangan hasil rekayasa genetika adalah terciptanya keanekaragaman hayati yang lebih tinggi.

2. Perkebunan, kehutanan, dan florikultur

Perkebunan kelapa sawit transgenik dengan minyak sawit yang kadar karotennya lebih tinggi saat ini mulai dirintis pengembangannya. Begitu pula, telah dikembangkan perkebunan karet transgenik dengan kadar protein lateks yang lebih tinggi dan perkebunan kapas transgenik yang mampu menghasilkan serat kapas berwarna yang lebih kuat.

Di bidang kehutanan telah dikembangkan tanaman jati transgenik, yang memiliki struktur kayu lebih baik. Sementara itu, di bidang florikultur antara lain telah diperoleh tanaman anggrek transgenik dengan masa kesegaran bunga yang lama. Demikian pula, telah dapat dihasilkan beberapa jenis tanaman bunga transgenik lainnya dengan warna bunga yang diinginkan dan masa kesegaran bunga yang lebih panjang.

Sentuhan teknologi DNA rekombinan pada florikultur antara lain dilakukan dengan mengisolasi dan memanipulasi gen biru dan gen etilen biru sesuai dengan tujuan yang dikehendaki. Di Amerika Serikat dan Eropa bibit violet carnation akan diproduksi melalui teknik rekayasa genetika. Bibit violet carnation transgenik ini disebut dengan moonshadow. Bunga moonshadow memiliki sangat sedikit benang sari, dan bahkan sesudah dipotong bunga tidak mempunyai benang sari lagi sehingga kemungkinan perpindahan gen ke tanaman lain dapat dicegah.

3. Kesehatan

Di bidang kesehatan, rekayasa genetika terbukti mampu menghasilkan berbagai jenis obat dengan kualitas yang lebih baik sehingga memberikan harapan dalam upaya penyembuhan sejumlah penyakit di masa mendatang. Bahan-bahan untuk mendiagnosis berbagai macam penyakit dengan lebih akurat juga telah dapat dihasilkan.

Teknik rekayasa genetika memungkinkan diperolehnya berbagai produk industri farmasi penting seperti insulin, interferon, dan beberapa hormon pertumbuhan dengan cara yang lebih efisien. Hal ini karena gen yang bertanggung jawab atas sintesis produk-produk tersebut diklon ke dalam sel inang bakteri tertentu yang sangat cepat pertumbuhannya dan hanya memerlukan cara kultivasi biasa.

Berbagai macam vaksin juga telah diproduksi menggunakan teknik rekayasa genetika, misalnya vaksin herpes, vaksin hepatitis B, vaksin lepra, vaksin malaria, dan vaksin kolera. Kecuali vaksin kolera, vaksin-vaksin tersebut dapat diproduksi dengan lebih efisien dan dalam jumlah yang lebih besar daripada produksi secara konvensional. Penggunaan vaksin malaria sangat diperlukan karena banyak nyamuk malaria yang saat ini sudah resisten terhadap DDT.

Contoh lain kontribusi potensial rekayasa genetika di bidang kesehatan yang hingga kini masih menjadi tantangan besar bagi para peneliti dari kalangan kedokteran dan ahli biologi molekuler adalah upaya terapi gen untuk mengatasi penyakit-penyakit seperti kanker dan sindrom hilangnya kekebalan bawaan atau acquired immunodeficiency syndrome (AIDS). Begitu juga, berkembangnya resistensi bakteri patogen terhadap antibiotik masih membuka peluang penelitian rekayasa genetika di bidang kesehatan.

4. Lingkungan

Rekayasa genetika ternyata sangat berpotensi untuk diaplikasikan dalam upaya penyelamatan keanekaragaman hayati, bahkan dalam bioremidiasi lingkungan yang sudah terlanjur rusak. Dewasa ini berbagai strain bakteri yang dapat digunakan untuk membersihkan lingkungan dari bermacam-macam faktor pencemaran telah ditemukan dan diproduksi dalam skala industri. Sebagai contoh, sejumlah pantai di salah satu negara industri dilaporkan telah tercemari oleh metilmerkuri yang bersifat racun keras baik bagi hewan maupun manusia meskipun dalam konsentrasi yang kecil sekali. Detoksifikasi logam air raksa (merkuri) organik ini dilakukan menggunakan tanaman Arabidopsis thaliana transgenik yang membawa gen bakteri tertentu yang dapat menghasilkan produk untuk mendetoksifikasi air raksa organik.

5. Industri

Pada industri pengolahan pangan, misalnya pada pembuatan keju, enzim renet yang digunakan juga merupakan produk organisme transgenik. Hampir 40% keju keras (hard cheese) yang diproduksi di Amerika Serikat menggunakan enzim yang berasal dari organisme transgenik. Demikian pula, bahan-bahan food additive seperti penambah cita rasa makanan, pengawet makanan, pewarna pangan, pengental pangan, dan sebagainya saat ini banyak menggunakan produk organisme transgenik.


Permasalahan dalam Pemanfaatan Produk Teknologi DNA Rekombinan

Meskipun terlihat begitu besar memberikan manfaat dalam berbagai bidang kehidupan manusia, produk teknologi DNA rekombinan (organisme transgenik beserta produk yang dihasilkannya) telah memicu sejumlah perdebatan yang menarik sekaligus kontroversial apabila ditinjau dari berbagai sudut pandang. Kontroversi pemanfaatan produk rekayasa genetika antara lain dapat dilihat dari aspek sosial, ekonomi, kesehatan, dan lingkungan.

Aspek sosial

1. Aspek agama

Penggunaan gen yang berasal dari babi untuk memproduksi bahan makanan dengan sendirinya akan menimbulkan kekhawatiran di kalangan pemeluk agama Islam. Demikian pula, penggunaan gen dari hewan dalam rangka meningkatkan produksi bahan makanan akan menimbulkan kekhawatiran bagi kaum vegetarian, yang mempunyai keyakinan tidak boleh mengonsumsi produk hewani. Sementara itu, kloning manusia, baik parsial (hanya organ-organ tertentu) maupun seutuhnya, apabila telah berhasil menjadi kenyataan akan mengundang kontroversi, baik dari segi agama maupun nilai-nilai moral kemanusiaan universal. Demikian juga, xenotransplantasi (transplantasi organ hewan ke tubuh manusia) serta kloning stem cell dari embrio manusia untuk kepentingan medis juga dapat dinilai sebagai bentuk pelanggaran terhadap norma agama.

2. Aspek etika dan estetika

Penggunaan bakteri E coli sebagai sel inang bagi gen tertentu yang akan diekspresikan produknya dalam skala industri, misalnya industri pangan, akan terasa menjijikkan bagi sebagian masyarakat yang hendak mengonsumsi pangan tersebut. Hal ini karena E coli merupakan bakteri yang secara alami menghuni kolon manusia sehingga pada umumnya diisolasi dari tinja manusia.

Aspek ekonomi

Berbagai komoditas pertanian hasil rekayasa genetika telah memberikan ancaman persaingan serius terhadap komoditas serupa yang dihasilkan secara konvensional. Penggunaan tebu transgenik mampu menghasilkan gula dengan derajad kemanisan jauh lebih tinggi daripada gula dari tebu atau bit biasa. Hal ini jelas menimbulkan kekhawatiran bagi masa depan pabrik-pabrik gula yang menggunakan bahan alami. Begitu juga, produksi minyak goreng canola dari tanaman rapeseeds transgenik dapat berpuluh kali lipat bila dibandingkan dengan produksi dari kelapa atau kelapa sawit sehingga mengancam eksistensi industri minyak goreng konvensional. Di bidang peternakan, enzim yang dihasilkan oleh organisme transgenik dapat memberikan kandungan protein hewani yang lebih tinggi pada pakan ternak sehingga mengancam keberadaan pabrik-pabrik tepung ikan, tepung daging, dan tepung tulang.

Aspek kesehatan

1. Potensi toksisitas bahan pangan

Dengan terjadinya transfer genetik di dalam tubuh organisme transgenik akan muncul bahan kimia baru yang berpotensi menimbulkan pengaruh toksisitas pada bahan pangan. Sebagai contoh, transfer gen tertentu dari ikan ke dalam tomat, yang tidak pernah berlangsung secara alami, berpotensi menimbulkan risiko toksisitas yang membahayakan kesehatan. Rekayasa genetika bahan pangan dikhawatirkan dapat mengintroduksi alergen atau toksin baru yang semula tidak pernah dijumpai pada bahan pangan konvensional. Di antara kedelai transgenik, misalnya, pernah dilaporkan adanya kasus reaksi alergi yang serius. Begitu pula, pernah ditemukan kontaminan toksik dari bakteri transgenik yang digunakan untuk menghasilkan pelengkap makanan (food supplement) triptofan. Kemungkinan timbulnya risiko yang sebelumnya tidak pernah terbayangkan terkait dengan akumulasi hasil metabolisme tanaman, hewan, atau mikroorganisme yang dapat memberikan kontribusi toksin, alergen, dan bahaya genetik lainnya di dalam pangan manusia.

Beberapa organisme transgenik telah ditarik dari peredaran karena terjadinya peningkatan kadar bahan toksik. Kentang Lenape (Amerika Serikat dan Kanada) dan kentang Magnum Bonum (Swedia) diketahui mempunyai kadar glikoalkaloid yang tinggi di dalam umbinya. Demikian pula, tanaman seleri transgenik (Amerika Serikat) yang resisten terhadap serangga ternyata memiliki kadar psoralen, suatu karsinogen, yang tinggi.

2. Potensi menimbulkan penyakit/gangguan kesehatan

WHO pada tahun 1996 menyatakan bahwa munculnya berbagai jenis bahan kimia baru, baik yang terdapat di dalam organisme transgenik maupun produknya, berpotensi menimbulkan penyakit baru atau pun menjadi faktor pemicu bagi penyakit lain. Sebagai contoh, gen aad yang terdapat di dalam kapas transgenik dapat berpindah ke bakteri penyebab kencing nanah (GO), Neisseria gonorrhoeae. Akibatnya, bakteri ini menjadi kebal terhadap antibiotik streptomisin dan spektinomisin. Padahal, selama ini hanya dua macam antibiotik itulah yang dapat mematikan bakteri tersebut. Oleh karena itu, penyakit GO dikhawatirkan tidak dapat diobati lagi dengan adanya kapas transgenik. Dianjurkan pada wanita penderita GO untuk tidak memakai pembalut dari bahan kapas transgenik.

Contoh lainnya adalah karet transgenik yang diketahui menghasilkan lateks dengan kadar protein tinggi sehingga apabila digunakan dalam pembuatan sarung tangan dan kondom, dapat diperoleh kualitas yang sangat baik. Namun, di Amerika Serikat pada tahun 1999 dilaporkan ada sekitar 20 juta penderita alergi akibat pemakaian sarung tangan dan kondom dari bahan karet transgenik.

Selain pada manusia, organisme transgenik juga diketahui dapat menimbulkan penyakit pada hewan. A. Putzai di Inggris pada tahun 1998 melaporkan bahwa tikus percobaan yang diberi pakan kentang transgenik memperlihatkan gejala kekerdilan dan imunodepresi. Fenomena yang serupa dijumpai pada ternak unggas di Indonesia, yang diberi pakan jagung pipil dan bungkil kedelai impor. Jagung dan bungkil kedelai tersebut diimpor dari negara-negara yang telah mengembangkan berbagai tanaman transgenik sehingga diduga kuat bahwa kedua tanaman tersebut merupakan tanaman transgenik.

Aspek lingkungan

1. Potensi erosi plasma nutfah

Penggunaan tembakau transgenik telah memupus kebanggaan Indonesia akan tembakau Deli yang telah ditanam sejak tahun 1864. Tidak hanya plasma nutfah tanaman, plasma nutfah hewan pun mengalami ancaman erosi serupa. Sebagai contoh, dikembangkannya tanaman transgenik yang mempunyai gen dengan efek pestisida, misalnya jagung Bt, ternyata dapat menyebabkan kematian larva spesies kupu-kupu raja (Danaus plexippus) sehingga dikhawatirkan akan menimbulkan gangguan keseimbangan ekosistem akibat musnahnya plasma nutfah kupu-kupu tersebut. Hal ini terjadi karena gen resisten pestisida yang terdapat di dalam jagung Bt dapat dipindahkan kepada gulma milkweed (Asclepia curassavica) yang berada pada jarak hingga 60 m darinya. Daun gulma ini merupakan pakan bagi larva kupu-kupu raja sehingga larva kupu-kupu raja yang memakan daun gulma milkweed yang telah kemasukan gen resisten pestisida tersebut akan mengalami kematian. Dengan demikian, telah terjadi kematian organisme nontarget, yang cepat atau lambat dapat memberikan ancaman bagi eksistensi plasma nutfahnya.

2. Potensi pergeseran gen

Daun tanaman tomat transgenik yang resisten terhadap serangga Lepidoptera setelah 10 tahun ternyata mempunyai akar yang dapat mematikan mikroorganisme dan organisme tanah, misalnya cacing tanah. Tanaman tomat transgenik ini dikatakan telah mengalami pergeseran gen karena semula hanya mematikan Lepidoptera tetapi kemudian dapat juga mematikan organisme lainnya. Pergeseran gen pada tanaman tomat transgenik semacam ini dapat mengakibatkan perubahan struktur dan tekstur tanah di areal pertanamannya.

3. Potensi pergeseran ekologi

Organisme transgenik dapat pula mengalami pergeseran ekologi. Organisme yang pada mulanya tidak tahan terhadap suhu tinggi, asam atau garam, serta tidak dapat memecah selulosa atau lignin, setelah direkayasa berubah menjadi tahan terhadap faktor-faktor lingkungan tersebut. Pergeseran ekologi organisme transgenik dapat menimbulkan gangguan lingkungan yang dikenal sebagai gangguan adaptasi.

Tanaman transgenik dapat menghasilkan protease inhibitor di dalam sari bunga sehingga lebah madu tidak dapat membedakan bau berbagai sari bunga. Hal ini akan mengakibatkan gangguan ekosistem lebah madu di samping juga terjadi gangguan terhadap madu yang diproduksi.

4. Potensi terbentuknya barrier species

Adanya mutasi pada mikroorganisme transgenik menyebabkan terbentuknya barrier species yang memiliki kekhususan tersendiri. Salah satu akibat yang dapat ditimbulkan adalah terbentuknya superpatogenitas pada mikroorganisme.

5. Potensi mudah diserang penyakit

Tanaman transgenik di alam pada umumnya mengalami kekalahan kompetisi dengan gulma liar yang memang telah lama beradaptasi terhadap berbagai kondisi lingkungan yang buruk. Hal ini mengakibatkan tanaman transgenik berpotensi mudah diserang penyakit dan lebih disukai oleh serangga.

Sebagai contoh, penggunaan tanaman transgenik yang resisten terhadap herbisida akan mengakibatkan peningkatan kadar gula di dalam akar. Akibatnya, akan makin banyak cendawan dan bakteri yang datang menyerang akar tanaman tersebut. Dengan perkataan lain, terjadi peningkatan jumlah dan jenis mikroorganisme yang menyerang tanaman transgenik tahan herbisida. Jadi, tanaman transgenik tahan herbisida justru memerlukan penggunaan pestisida yang lebih banyak, yang dengan sendirinya akan menimbulkan masalah tersendiri bagi lingkungan


DNA sequence

Prinsip Sekuensing DNA

Molekul DNA rekombinan yang memperlihatkan hasil positif dalam reaksi hibridisasi dengan fragmen pelacak sangat diduga sebagai molekul yang membawa fragmen sisipan atau bahkan gen yang diinginkan. Namun, hal ini masih memerlukan analisis lebih lanjut untuk memastikan bahwa fragmen tersebut benar-benar sesuai dengan tujuan kloning. Analisis antara lain dapat dilakukan atas dasar urutan (sekuens) basa fragmen sisipan.

Penentuan urutan (sekuensing) basa DNA pada prinsipnya melibatkan produksi seperangkat molekul/fragmen DNA yang berbeda-beda ukurannya tetapi salah satu ujungnya selalu sama. Selanjutnya, fragmen-fragmen ini dimigrasikan/dipisahkan menggunakan elektroforesis gel poliakrilamid atau polyacrylamide gel electrophoresis (PAGE) agar pembacaan sekuens dapat dilakukan. Di bawah ini akan diuraikan sekilas dua macam metode sekuensing DNA.


...


Metode Maxam-Gilbert

Metode sekuensing DNA yang pertama dikenal adalah metode kimia yang dikembangkan oleh A.M. Maxam dan W. Gilbert pada tahun 1977. Pada metode ini fragmen-fragmen DNA yang akan disekuens harus dilabeli pada salah satu ujungnya, biasanya menggunakan fosfat radioaktif atau suatu nukleotida pada ujung 3’. Metode Maxam-Gilbert dapat diterapkan baik untuk DNA untai ganda maupun DNA untai tunggal dan melibatkan pemotongan basa spesifik yang dilakukan dalam dua tahap.

Molekul DNA terlebih dahulu dipotong-potong secara parsial menggunakan piperidin. Pengaturan masa inkubasi atau konsentrasi piperidin akan menghasilkan fragmen-fragmen DNA yang bermacam-macam ukurannya. Selanjutnya, basa dimodifikasi menggunakan bahan-bahan kimia tertentu. Dimetilsulfat (DMS) akan memetilasi basa G, asam format menyerang A dan G, hidrazin akan menghidrolisis C dan T, tetapi garam yang tinggi akan menghalangi reaksi T sehingga hanya bekerja pada C. Dengan demikian, akan dihasilkan empat macam fragmen, masing-masing dengan ujung G, ujung A atau G, ujung C atau T, dan ujung C.



Gambar 13.1. Contoh PAGE sekuensing dengan metode Maxam-Gilbert

Dari hasil PAGE pada Gambar 13.1 dapat diketahui sekuens fragmen DNA yang dipelajari atas dasar laju migrasi masing-masing pita. Lajur kedua berisi fragmen-fragmen yang salah satu ujungnya adalah A atau G. Untuk memastikannya harus dilihat pita-pita pada lajur pertama. Jika pada lajur kedua terdapat pita-pita yang posisi migrasinya sama dengan posisi migrasi pada lajur pertama, maka dapat dipastikan bahwa pita-pita tersebut merupakan fragmen yang salah satu ujungnya adalah G. Sisanya adalah pita-pita yang merupakan fragmen dengan basa A pada salah satu ujungnya. Cara yang sama dapat kita gunakan untuk memastikan pita-pita pada lajur ketiga, yaitu dengan membandingkannya dengan pita-pita pada lajur keempat.

Seperti halnya pada elektroforesis gel agarosa (Bab X), laju migrasi pita menggambarkan ukuran fragmen. Makin kecil ukuran fragmen, makin cepat migrasinya. Dengan demikian, ukuran fragmen pada contoh tersebut di atas dapat diurutkan atas dasar laju/posisi migrasinya. Jadi, kalau diurutkan dari yang terkecil hingga yang terbesar, hasilnya adalah fragmen-fragmen dengan ujung TTGCCCCGCGTGGCGCAAAGG. Inilah sekuens fragmen DNA yang dipelajari.

Metode Sanger

Dewasa ini metode sekuensing Maxam-Gilbert sudah sangat jarang digunakan karena ada metode lain yang jauh lebih praktis, yaitu metode dideoksi yang dikembangkan oleh A. Sanger dan kawan-kawan pada tahun 1977 juga.

Metode Sanger pada dasarnya memanfaatkan dua sifat salah satu subunit enzim DNA polimerase yang disebut fragmen klenow. Kedua sifat tersebut adalah kemampuannya untuk menyintesis DNA dengan adanya dNTP dan ketidakmampuannya untuk membedakan dNTP dengan ddNTP. Jika molekul dNTP hanya kehilangan gugus hidroksil (OH) pada atom C nomor 2 gula pentosa, molekul ddNTP atau dideoksi nukleotida juga mengalami kehilangan gugus OH pada atom C nomor 3 sehingga tidak dapat membentuk ikatan fosfodiester. Artinya, jika ddNTP disambungkan oleh fragmen klenow dengan suatu molekul DNA, maka polimerisasi lebih lanjut tidak akan terjadi atau terhenti. Basa yang terdapat pada ujung molekul DNA ini dengan sendirinya adalah basa yang dibawa oleh molekul ddNTP.

Dengan dasar pemikiran itu sekuensing DNA menggunakan metode dideoksi dilakukan pada empat reaksi yang terpisah. Keempat reaksi ini berisi dNTP sehingga polimerisasi DNA dapat berlangsung. Namun, pada masing-masing reaksi juga ditambahkan sedikit ddNTP sehingga kadang-kadang polimerisasi akan terhenti di tempat -tempat tertentu sesuai dengan ddNTP yang ditambahkan. Jadi, di dalam tiap reaksi akan dihasilkan sejumlah fragmen DNA yang ukurannya bervariasi tetapi ujung 3’nya selalu berakhir dengan basa yang sama. Sebagai contoh, dalam reaksi yang mengandung ddATP akan diperoleh fragmen-fragmen DNA dengan berbagai ukuran yang semuanya mempunyai basa A pada ujung 3’nya.

Pada Gambar 13.2 diberikan sebuah contoh sekuensing sebuah fragmen DNA. Tabung ddATP menghasilkan dua fragmen dengan ukuran tiga dan tujuh basa; tabung ddCTP menghasilkan tiga fragmen dengan ukuran satu, dua, dan empat basa; tabung ddGTP menghasilkan dua fragmen dengan ukuran lima dan sembilan basa; tabung ddTTP menghasilkan dua fragmen dengan ukuran enam dan delapan basa. Di depan (arah 5’) tiap fragmen ini sebenarnya terdapat primer, yang berfungsi sebagai prekursor reaksi polimerisasi sekaligus untuk kontrol hasil sekuensing karena urutan basa primer telah diketahui.

Untuk melihat ukuran fragmen-fragmen hasil sekuensing tersebut dilakukan elektroforesis menggunakan gel poliakrilamid sehingga akan terjadi perbedaan migrasi sesuai dengan ukurannya masing-masing. Setelah ukurannya diketahui, dilakukan pengurutan fragmen mulai dari yang paling pendek hingga yang paling panjang, yaitu fragmen dengan ujung C (satu basa) hingga fragmen dengan ujung G (sembilan basa). Dengan demikian, hasil sekuensing yang diperoleh adalah CCACGTATG. Urutan basa DNA yang dicari adalah urutan yang komplementer dengan hasil sekuensing ini, yaitu GGTGCATAC.



Gambar 13.1. Skema sekuensing DNA

a) reaksi polimerisasi dan terminasi

b) PAGE untuk melihat ukuran fragmen

Pangkalan Data Sekuens DNA

Selama bertahun-tahun telah banyak sekuens DNA yang ditentukan oleh para ilmuwan di seluruh dunia, dan saat ini kebanyakan jurnal ilmiah mempersyaratkan penyerahan sekuens DNA terlebih dahulu untuk keperluan pangkalan data publik sebelum mereka menerima naskah selengkapnya dari para penulis/ilmuwan. Pengelola pangkalan data akan saling bertukar informasi tentang sekuens-sekuens yang terkumpul dan menyediakannya untuk akses publik sehingga semua pangkalan data yang ada akan menjadi nara sumber yang sangat bermanfaat.

Sekuens-sekuens baru terus bertambah dengan kecepatan yang kian meningkat. Begitu pula, sejumlah perangkat lunak komputer diperlukan agar data yang tersedia dapat dimanfaatkan dengan lebih baik.

EMBL di Eropa dan GenBank di Amerika Serikat merupakan dua pangkalan data sekuens DNA terbesar di dunia. Selain sekuens DNA, mereka juga mengelola data sekuens RNA dan protein. Sementara itu, beberapa perusahaan mempunyai pangkalan data sekuens DNA sendiri.

Ketika sekuens suatu fragmen DNA telah diketahui, hanya ada sedikit sekali gambaran yang dapat diperoleh dari sekuens tersebut. Analisis sekuens perlu dilakukan untuk mengetahui beberapa karakteristik pentingnya seperti peta restriksi, rangka baca, kodon awal dan kodon akhir, atau kemungkinan tempat promoternya. Di samping itu, perlu juga dipelajari hubungan kekerabatan suatu sekuens baru dengan beberapa sekuens lainnya yang telah terlebih dahulu diketahui. Biasanya, analisis semacam itu dilakukan menggunakan paket-paket perangkat lunak, misalnya paket GCG Universitas Wisconsin dan DNAstar.

Proyek-proyek Sekuensing Genom

Sejalan dengan berkembangnya mesin-mesin sekuensing DNA automatis (automatic DNA sequencer), sejumlah organisasi telah memberikan perhatian dan dukungan dana bagi penentuan sekuens genom berbagai spesies organisme penting. Beberapa genom yang ukurannya sangat kecil seperti genom virus HIV dan fag λ telah disekuens seluruhnya. Genom sejumlah bakteri, misalnya E. coli (4,6 x 106 pb), dan khamir Saccharomyces cerevisiae (2,3 x 107 pb) juga telah selesai disekuens. Sementara itu, proyek sekuensing genom tanaman Arabidopsis thaliana (6,4 x 107 pb) dan nematoda Caenorhabditis elegans saat ini masih berlangsung. Proyek Genom Manusia (Human Genom Project), yang diluncurkan pada tahun 1990 dan sebenarnya diharapkan selesai pada tahun 2005, ternyata berakhir dua tahun lebih cepat daripada jadwal yang telah ditentukan.

Pada genom manusia dan genom-genom lain yang berukuran besar biasanya dilakukan pemetaan kromosom terlebih dahulu untuk mengetahui lokus-lokus gen pada tiap kromosom. Selanjutnya, perpustakaan gen untuk suatu kromosom dikonstruksi menggunakan vektor YACs (lihat Bab XI) dan klon-klon YACs yang saling tumpang tindih diisolasi hingga panjang total kromosom tersebut akan tercakup. Demikian seterusnya untuk kromosom-kromosom yang lain hingga akhirnya akan diperoleh sekuens genom total yang sambung-menyambung dari satu kromosom ke kromosom berikutnya.



Polymerase Chain Reaction (PCR)

Pengertian dan Kegunaan PCR

Pada bagian akhir Bab IX telah disinggung bahwa fragmen pelacak yang diperlukan dalam seleksi rekombinan merupakan molekul DNA untai ganda yang urutan basanya harus komplementer dengan sebagian urutan basa fragmen (gen) yang dilacak. Fragmen pelacak ini dibuat secara in vitro menggunakan teknik PCR. Namun, teknik yang ditemukan oleh Kary Mullis pada tahun 1987 ini, tidak hanya digunakan untuk membuat fragmen pelacak, tetapi secara umum teknik ini merupakan cara untuk menggandakan urutan basa nukleotida tertentu secara in vitro.

...

Komponen dan Tahapan PCR

Penggandaan urutan basa nukleotida berlangsung melalui reaksi polimerisasi yang dilakukan berulang-ulang secara berantai selama beberapa putaran (siklus). Tiap reaksi polimerisasi membutuhkan komponen-komponen sintesis DNA seperti untai DNA yang akan digunakan sebagai cetakan (templat), molekul oligonukleotida untai tunggal dengan ujung 3’-OH bebas yang berfungsi sebagai prekursor (primer), sumber basa nukleotida berupa empat macam dNTP (dATP, dGTP, dCTP, dTTP), dan enzim DNA polimerase.

DNA templat adalah DNA untai ganda yang membawa urutan basa fragmen atau gen yang akan digandakan. Urutan basa ini disebut juga urutan target (target sequence). Penggandaan urutan target pada dasarnya merupakan akumulasi hasil polimerisasi molekul primer.

Primer adalah molekul oligonukleotida untai tunggal yang terdiri atas sekitar 30 basa. Polimerisasi primer dapat berlangsung karena adanya penambahan basa demi basa dari dNTP yang dikatalisasi oleh enzim DNA polimerase. Namun, pada PCR enzim DNA polimerase yang digunakan harus termostabil karena salah satu tahap reaksinya adalah denaturasi untai ganda DNA yang membutuhkan suhu sangat tinggi (sekitar 95ºC). Salah satu enzim DNA polimerase yang umum digunakan adalah Taq DNA polimerase, yang berasal dari bakteri termofilik Thermus aquaticus.

Tiap putaran reaksi PCR terdiri atas tiga tahap, yaitu denaturasi templat, penempelan primer, dan polimerisasi primer, yang masing-masing berlangsung pada suhu lebih kurang 95ºC, 50ºC, dan 70ºC. Pada tahap denaturasi, pasangan untai DNA templat dipisahkan satu sama lain sehingga menjadi untai tunggal. Pada tahap selanjutnya, masing-masing untai tunggal akan ditempeli oleh primer. Jadi, ada dua buah primer yang masing-masing menempel pada untai tunggal DNA templat. Biasanya, kedua primer tersebut dinamakan primer maju (forward primer) dan primer mundur (reverse primer). Setelah menempel pada untai DNA templat, primer mengalami polimerisasi mulai dari tempat penempelannya hingga ujung 5’ DNA templat (ingat polimerisasi DNA selalu berjalan dari ujung 5’ ke 3’ atau berarti dari ujung 3’ ke 5’ untai templatnya). Dengan demikian, pada akhir putaran reaksi pertama akan diperoleh dua pasang untai DNA jika DNA templat awalnya berupa sepasang untai DNA.

Pasangan-pasangan untai DNA yang diperoleh pada suatu akhir putaran reaksi akan menjadi templat pada putaran reaksi berikutnya. Begitu seterusnya hingga pada putaran yang ke n diharapkan akan diperoleh fragmen DNA pendek sebanyak 2n – 2n. Fragmen DNA pendek yang dimaksudkan adalah fragmen yang ukurannya sama dengan jarak antara kedua tempat penempelan primer. Fragmen pendek inilah yang merupakan urutan target yang memang dikehendaki untuk digandakan (diamplifikasi).

Bisa kita bayangkan seandainya PCR dilakukan dalam 20 putaran saja, maka pada akhir reaksi akan diperoleh fragmen urutan target sebanyak 220 – 2.20 = 1.048576 – 40 = 1.048536 ! Jumlah ini masih dengan asumsi bahwa DNA templat awalnya hanya satu untai ganda. Padahal kenyataannya, hampir tidak mungkin DNA templat awal hanya berupa satu untai ganda. Jika DNA templat awal terdiri atas 20 untai ganda saja, maka jumlah tadi tinggal dikalikan 20 menjadi 20.970.720, suatu jumlah yang sangat cukup bila akan digunakan sebagai fragmen pelacak.

Gambar 12. 1. Putaran pertama PCR

Perancangan Primer

Tahapan PCR yang paling menentukan adalah penempelan primer. Sepasang primer oligonukleotida (primer maju dan primer mundur) yang akan dipolimerisasi masing-masing harus menempel pada sekuens target, tepatnya pada kedua ujung fragmen yang akan diamplifikasi. Untuk itu urutan basanya harus komplementer atau setidak-tidaknya memiliki homologi cukup tinggi dengan urutan basa kedua daerah ujung fragmen yang akan diamplifikasi itu. Padahal, kita belum mengetahui dengan pasti urutan basa sekuens target. Oleh karena itu, diperlukan cara tertentu untuk merancang urutan basa kedua primer yang akan digunakan.

Dasar yang digunakan adalah urutan basa yang diduga mempunyai kemiripan dengan urutan basa sekuens target. Urutan ini adalah urutan serupa dari sejumlah spesies/strain organisme lainnya yang telah diketahui/dipublikasikan. Sebagai contoh, untuk merancang sepasang primer yang diharapkan dapat mengamplifikasi sebagian gen lipase pada isolat Bacillus termofilik tertentu dapat digunakan informasi urutan basa gen lipase dari strain-strain Pseudomonas fluorescens, P. mendocina , dan sebagainya, yang sebelumnya telah diketahui.

Urutan-urutan basa fragmen tertentu dari berbagai strain tersebut kemudian dijajarkan dan dicari satu daerah atau lebih yang memperlihatkan homologi tinggi antara satu strain dan lainnya. Daerah ini dinamakan daerah lestari (conserved area). Sebagian/seluruh urutan basa pada daerah lestari inilah yang akan menjadi urutan basa primer.

Sebenarnya, daerah lestari juga dapat ditentukan melalui penjajaran urutan asam amino pada tingkat protein. Urutan asam amino ini kemudian diturunkan ke urutan basa DNA. Dari satu urutan asam amino sangat mungkin akan diperoleh lebih dari satu urutan basa DNA karena setiap asam amino dapat disandi oleh lebih dari satu triplet kodon. Dengan demikian, urutan basa primer yang disusun dapat merupakan kombinasi beberapa kemungkinan. Primer dengan urutan basa semacam ini dinamakan primer degenerate. Selain itu, primer yang disusun melalui penjajaran urutan basa DNA pun dapat merupakan primer degenerate karena urutan basa pada daerah lestari di tingkat DNA pun tidak selamanya memperlihatkan homologi sempurna (100%).

Urutan basa pasangan primer yang telah disusun kemudian dianalisis menggunakan program komputer untuk mengetahui kemungkinan terjadinya primer-dimer akibat homologi sendiri (self-homology) atau homologi silang (cross-homology). Selain itu, juga perlu dilihat kemungkinan terjadinya salah tempel (mispriming), yaitu penempelan primer di luar sekuens target. Analisis juga dilakukan untuk mengetahui titik leleh (Tm) masing-masing primer dan kandungan GC-nya. Sepasang primer yang baik harus mempunyai Tm yang relatif sama dengan kandungan GC yang cukup tinggi.

Gambar 12.2. Hasil PCR putaran kedua dan ketiga



Perpustakaan Gen

Pengertian dan Macam Perpustakaan Gen

Suatu perpustakaan gen dapat diartikan sebagai sekumpulan sekuens (urutan) DNA dari suatu organisme yang masing-masing telah diklon ke dalam vektor tertentu untuk memudahkan pemurnian, penyimpanan, dan analisisnya. Pada dasarnya terdapat dua macam perpustakaan gen yang dapat dikonstruksi, bergantung kepada sumber DNA digunakan. Jika DNA yang digunakan adalah DNA genomik/kromosom, maka perpustakaan yang dihasilkan disebut perpustakaan genom. Sementara itu, jika DNA yang digunakan merupakan hasil transkripsi balik suatu populasi mRNA seperti yang umum dijumpai pada eukariot, maka perpustakaan yang diperoleh dinamakan perpustakaan cDNA.

Hal yang perlu diperhatikan ketika kita melakukan konstruksi suatu perpustakaan gen adalah bahwa perpustakaan tersebut harus merepresentasikan semua gen yang ada di dalam sumber DNA asalnya. Dengan perkataan lain, suatu perpustakaan gen dikatakan representatif apabila berisi semua sekuens aslinya. Selain itu, jika suatu perpustakaan tidak mengandung klon dalam jumlah yang mencukupi, maka sangat dimungkinkan hilangnya beberapa gen tertentu.

Untuk mendapatkan perpustakaan genom yang representatif, DNA genomik harus dimurnikan dan kemudian dipotong secara acak menjadi fragmen-fragmen yang ukurannya sesuai dengan keperluan kloning menggunakan vektor yang dipilih. Fraksionasi sel pada eukariot akan mengurangi kontaminasi oleh DNA organel (mitokondria, kloroplas). Oleh karena itu, pemurnian DNA genomik eukariot biasanya dilakukan dengan terlebih dahulu mengisolasi nukleus dan menghilangkan protein, lemak, serta makromolekul lain yang tidak diinginkan dengan memberikan protease dan melakukan ekstraksi fenol-kloroform. Sementara itu, DNA prokariot dapat diekstraksi langsung.

DNA genomik hasil pemurnian tersebut selanjutnya dipotong-potong secara acak. Pada dasarnya ada dua cara pemotongan, yaitu pemotongan fisik seperti sonikasi dan digesti menggunakan enzim restriksi. Pemotongan dengan enzim restriksi akan menghasilkan fragmen-fragmen dengan ujung tertentu (lihat Bab IX). Untuk mendapatkan fragmen-fragmen dengan ukuran relatif besar dilakukan digesti parsial dengan cara mengurangi jumlah enzim restriksi atau waktu pemotongan yang digunakan Dengan digesti parsial ini enzim restriksi tidak akan memotong DNA genomik pada setiap tempat pengenalan yang ada sehingga akan diperoleh fragmen-fragmen DNA genomik yang relatif panjang.


...

Besarnya Perpustakaan Gen

Besarnya suatu perpustakaan gen dilihat dari banyaknya rekombinan yang terdapat di dalamnya. Untuk menghitung banyaknya rekombinan yang harus ada di dalam suatu perpustakaan gen digunakan rumus sebagai berikut.

N = ln (1 – P) / ln (1 – f)

Pada rumus tersebut N adalah banyaknya rekombinan yang harus ada di dalam perpustakaan gen, P peluang yang diinginkan, dan f nisbah panjang fragmen sisipan terhadap panjang genom. Sebagai contoh, untuk mendapatkan fragmen sisipan berukuran 20 kb (20.000 pb) dengan peluang 0,99 diperlukan perpustakaan gen yang besarnya berbeda antara E .coli dan manusia.

N E. coli = ln (1 – 0,99) / ln (1 – 20.000 / 4,6 x 106) = 1,1 x 103

N manusia = ln (1 – 0,99) / ln (1 – 20.000 / 3 x 109) = 6,9 x 105

Kita bisa melihat bahwa banyaknya rekombinan yang diperlukan untuk mendapatkan fragmen dengan ukuran dan peluang yang sama ternyata berbeda, bergantung kepada panjang genom organismenya. Pada E. coli dengan panjang genom yang lebih pendek (4,6 x 106) daripada panjang genom manusia (3 x 109) diperlukan rekombinan yang lebih sedikit (1,1 x 103) daripada rekombinan untuk perpustakaan gen manusia (6,9 x 105).

Perhitungan seperti tersebut di atas juga dapat menjelaskan alasan bahwa apabila genom suatu prokariot dengan fragmen sisipan sepanjang 5 hingga 10 kb diklon menggunakan plasmid akan menghasilkan perpustakaan gen yang baik meskipun hanya membawa beberapa ribu rekombinan. Demikian pula, untuk genom-genom yang besar cukup diperlukan sedikit rekombinan meskipun fragmen sisipannya panjang. Penggunaan vektor yang dapat mengklon fragmen-fragmen panjang, misalnya kosmid dan YAC, memungkinkan konstruksi perpustakaan genom dengan jumlah rekombinan yang tidak terlalu besar.

Elektroforesis

Sebelum fragmen-fragmen DNA genomik hasil digesti restriksi diligasikan ke dalam suatu vektor tertentu (lihat Bab IX) terlebih dahulu perlu dilakukan pemeriksaan atas keberhasilan digesti tersebut. Untuk melihat keberhasilan digesti restriksi, DNA divisualisasikan menggunakan teknik elektroforesis. Namun, elektroforesis sendiri sebenarnya bukanlah teknik visualisasi DNA semata-mata karena teknik ini dapat juga digunakan untuk keperluan isolasi dan pemurnian fragmen DNA tertentu.

Prinsip kerja elektroforesis adalah memisahkan molekul-molekul bermuatan listrik berdasarkan atas ukuran (berat molekul) dan muatan listriknya. Khusus untuk DNA, pemisahan tidak didasarkan atas perbedaan muatan listriknya, tetapi menurut ukuran dan konformasi atau struktur fisik molekulnya. Gel yang biasa digunakan adalah agarosa dan poliakrilamid. Gel agarosa digunakan untuk memisahkan sampel DNA dengan ukuran dari beberapa ratus hingga 20.000 pasang basa (pb), sedangkan gel poliakrilamid digunakan untuk fragmen-fragmen DNA yang lebih kecil.

Molekul DNA bermuatan negatif sehingga di dalam medan listrik akan bermigrasi melalui matriks gel menuju kutub positif (anode). Makin besar ukuran molekulnya, makin rendah laju migrasinya. Jika hubungan antara ukuran molekul dan laju migrasi dipetakan dalam suatu grafik logaritmik, maka akan diperoleh kurva linier. Oleh karena itu, kita dapat memperkirakan berat molekul suatu fragmen DNA dengan melihat atau membandingkan laju migrasinya dengan laju migrasi fragmen-fragmen molekul DNA strandar (marker) yang telah diketahui ukurannya.

Fragmen-fragmen DNA divisualisasikan di bawah sinar ultraviolet setelah terlebih dulu direndam di dalam larutan etidium bromid, pewarna yang akan menyisip atau melakukan interkalasi di sela-sela basa DNA. Perendaman dilakukan setelah migrasi dianggap cukup untuk dihentikan. Fragmen DNA akan nampak sebagai pita berwarna merah dengan posisi migrasi yang sesuai dengan berat molekulnya. Cara ini dapat memvisualisasikan fragmen DNA hingga sekecil 0,05 µg.

Seperti telah dikatakan di atas bahwa selain karena perbedaan ukurannya, laju migrasi DNA pada gel elektroforesis juga ditentukan oleh konformasi molekulnya. DNA dengan bentuk covalently closed circular (CCC) akan bergerak paling cepat, disusul berikutnya konformasi open circular (OC), dan yang terakhir linier. Oleh karena perbedaan konformasi menyebabkan perbedaan laju migrasi, maka penentuan ukuran suatu fragmen DNA selalu dilakukan pada konformasi linier.

Marilah kembali kita bicarakan visualisasi fragmen-fragmen DNA genomik hasil digesti restriksi. DNA genomik, baik yang utuh maupun yang telah dipotong menggunakan enzim restriksi, perlu divisualisasikan pada gel elektroforesis. Begitu pula halnya dengan vektor utuh dan vektor yang telah dilinierkan serta vektor rekombinan hasil ligasi dengan fragmen DNA genomik (lihat Bab IX). Selain itu, molekul DNA marker yang telah diketahui ukurannya juga dimigrasikan sebagai standar untuk menentukan ukuran sampel-sampel DNA yang kita analisis.


DNA genomik utuh pada lajur 2 nampak sebagai pita dengan laju migrasi paling lambat. Jika dibandingkan dengan marker, akan terlihat bahwa ukurannya lebih besar dari 21,3 kb. Berikutnya pada lajur 3, DNA genomik yang telah dipotong menggunakan enzim restriksi tertentu tervisualisasi sebagai pita melebar (smear). Pita ini merupakan kumpulan fragmen-fragmen DNA hasil pemotongan tersebut yang sangat bervariasi ukurannya. Sementara itu, pada lajur 4 dan 5 terlihat jelas perbedaan laju migrasi antara plasmid utuh yang mempunyai konformasi CCC dan plasmid linier hasil pemotongan dengan suatu enzim restriksi. Plasmid linier bergerak lebih lambat daripada plasmid CCC, dan posisi migrasinya digunakan untuk menentukan ukurannya (sekitar 4,9 kb). Terakhir pada lajur 6, plasmid rekombinan hasil ligasi dengan fragmen DNA genomik menunjukkan ukuran yang lebih besar dari 4,9 kb. Hal ini terlihat dari migrasinya yang lebih lambat daripada plasmid linier tanpa fragmen sisipan.

Prosedur Skrining

Proses untuk mengidentifikasi suatu klon yang membawa gen tertentu yang diinginkan di antara sejumlah besar klon lainnya di dalam perpustakaan gen dinamakan skrining. Pada dasarnya skrining dilakukan dengan teknik hibridisasi menggunakan suatu molekul pelacak DNA (DNA probe). Beberapa pengetahuan mengenai gen yang akan dicari, atau produknya, diperlukan dalam pembuatan molekul pelacak bagi gen tersebut. Di dalam proses skrining, molekul pelacak akan menempel pada sekuens DNA yang komplementer dengannya sehingga klon yang diinginkan dapat dikenali.

Apabila diperoleh protein yang merupakan produk gen tertentu dalam jumlah yang memungkinkan untuk penentuan sekuens asam aminonya, maka dari informasi sekuens asam amino ini dapat disusun beberapa kemungkinan sekuens DNA yang menyandinya. Selanjutnya, informasi sekuens DNA yang disusun dapat digunakan untuk membuat molekul pelacak.

Hibridisasi koloni dan plak

Seleksi transforman dengan vektor rekombinan yang dikonstruksi menggunakan vektor λ dilakukan dengan melihat terbentuknya plak pada medium kultur sel inang. Sementara itu, seleksi transforman dengan vektor rekombinan yang dikonstruksi menggunakan plasmid dilakukan dengan melihat pertumbuhan koloni pada medium seleksi (lihat Bab XI). Namun, prosedur skrining bagi kedua sistem kloning tersebut pada dasarnya sama saja.

Langkah pertama adalah mentransfer DNA di dalam plak atau koloni ke suatu membran nilon atau nitroselulosa. Untuk plak, DNA λ dapat langsung diperoleh dan ditransfer ke membran karena plak merupakan area tempat keberadaan bakteri inang yang mengalami lisis. Akan tetapi, jika yang ditransfer ke membran adalah koloni-koloni bakteri, maka perlu dilakukan lisis sel bakteri untuk mendapatkan DNA. Sebelumnya, dibuat replika bagi koloni-koloni yang ditransfer tersebut di dalam medium kultur yang baru.

Lisis sel bakteri biasanya dilakukan dengan merendam membran nilon di dalam sodium dodesil sulfat (SDS) dan protease. Selanjutnya, DNA yang keluar dari sel didenaturasi menggunakan alkali sehingga diperoleh DNA untai tunggal, yang kemudian difiksasi ke membran dengan pengeringan atau iradiasi UV. Membran dicelupkan ke dalam larutan pelacak DNA dan diinkubasi agar terjadi hibridisasi antara pelacak, yang juga berupa untai tunggal, dan beberapa DNA untai tunggal yang komplementer dengannya. Pelacak DNA biasanya diberi label radioaktif.

Setelah hibridisasi, membran dicuci untuk menghilangkan sisa-sisa pelacak yang tidak terhibridisasi. Beberapa DNA di dalam membran yang mengalami hibridisasi divisualisasikan menggunakan autoradiografi dengan sinar X. Dengan membandingkan posisi DNA yang terhibridisasi oleh pelacak dengan posisi koloni pada kultur replika akan diketahui koloni-koloni yang membawa DNA rekombinan dengan fragmen sisipan yang diinginkan.


Gambar 10.3. Skema hibridisasi koloni / plak

Skrining ekspresi

Pada dasarnya skrining ekspresi sama dengan skrining perpustakaan gen melalui hibridisasi koloni/plak. Hanya saja pada skrining ekspresi, bukannya DNA yang dideteksi pada membran, melainkan protein yang merupakan produk suatu gen yang diinginkan. Sebagai pelacak digunakan antibodi, sedangkan untuk mengetahui terjadinya hibridisasi digunakan antibodi lain atau bahan kimia yang dapat mengenalinya. Dengan cara seperti ini dapat ditentukan koloni/plak yang mengekspresikan protein yang dikehendaki.

Penghambatan dan pelepasan translasi oleh hibrid

Klon-klon cDNA dapat digunakan untuk menghibridisasi mRNA yang diisolasi. Setelah dilakukan hibridisasi, populasi mRNA langsung ditranslasi menjadi protein. Translasi tidak akan terjadi pada segmen mRNA yang terhibridisasi oleh cDNA, atau dengan perkataan lain, translasi telah dihambat oleh hibrid (hybrid-arrest translation). Dengan mendeteksi produk-produk protein yang tidak terbentuk dapat diketahui cDNA yang menghambat translasi suatu protein. Artinya, cDNA ini dapat dipastikan membawa sekuens yang menyandi protein yang tidak ditranslasi tersebut.

Cara kebalikannya juga dapat dilakukan. Hibrid-hibrid antara cDNA dan mRNA dimurnikan. Kemudian, mRNA dilepaskan dari hibrid dengan pemanasan atau menggunakan agen denaturasi. Setelah itu, mRNA ditranslasi (hybrid-release translation) untuk menghasilkan produk protein tertentu. Dengan mengetahui protein yang terbentuk dapat diketahui klon cDNA yang membawa sekuens penyandi protein tersebut. Secara skema perbandingan kedua prosedur skrining tersebut dapat dilihat pada Gambar 10.4.


Southern blotting dan Northern blotting

Kedua prosedur skrining ini digunakan untuk mendeteksi keberadaan sekuens tertentu tetapi tidak dilakukan langsung pada klon-klon rekombinannya. Skrining didasarkan atas hasil hibridisasi antara molekul asam nukleat dan pelacaknya pada gel agarosa. Istilah Southern blotting berasal dari nama penemunya, sedangkan Northern blotting diekstrapolasi dari nama tersebut. Jika Southern blotting ditujukan untuk DNA, Northern blotting digunakan untuk hibridisasi RNA.

Tahap pertama untuk kedua prosedur tersebut adalah migrasi molekul asam nukleat pada gel agarosa. Khusus untuk Southern blotting, dilakukan denaturasi DNA (biasanya menggunakan alkali) sehingga akan diperoleh DNA untai tunggal. Pita-pita untai tunggal, baik DNA maupun RNA, kemudian dipindahkan ke membran nilon atau nitroselulosa seperti halnya pada hibridisasi koloni.

Begitu asam nukleat dipindahkan ke membran, tahap-tahap selanjutnya pada kedua prosedur skrining tersebut sama, yaitu fiksasi asam nukleat pada membran, hibridisasi dengan pelacak, pencucian sisa pelacak, dan deteksi fragmen yang mengalami hibridisasi menggunakan autoradiografi. Di antara tahap-tahap tersebut kondisi hibridisasi merupakan faktor yang paling memerlukan perhatian. Jika antara pelacak dan sekuens target terdapat homologi yang sangat tinggi (mendekati atau sama dengan 100%), maka dapat diberlakukan kondisi hibridisasi yang ketat, yaitu dengan suhu hibridisasi tinggi dan konsentrasi garam rendah pada bufer hibridisasi. Sebaliknya, jika sekuens pelacak tidak terlalu homolog dengan sekuens target, maka ketetatan kondisi hibridisasi harus diturunkan sampai pada tingkatan yang memungkinkan terbentuknya hibrid-hibrid yang kurang sempurna. Namun, jika keketatannya diturunkan terlalu banyak, fragmen pelacak mungkin akan berikatan dengan sekuens-sekuens lain yang tidak spesifik.

Southern blotting terhadap fragmen-fragmen DNA genomik yang diklon dapat dilakukan menggunakan pelacak berupa cDNA untuk mencari bagian-bagian klon genomik yang sesuai dengan fragmen cDNA pelacak. Jika fragmen DNA genomik yang membawa suatu gen tertentu dapat dideteksi, maka akan diketahui ukuran fragmen yang membawa gen tersebut. Blot-blot dengan sampel DNA atau RNA dari organisme yang berbeda (zoo blots) dapat menunjukkan betapa konservatifnya suatu gen di antara spesies yang satu dan lainnya.



Vektor Kloning

Pengertian dan Macam-macam Vektor Kloning
Pada Bab IX antara lain telah dibicarakan bahwa transformasi sel inang dilakukan menggunakan perantara vektor. Jadi, vektor adalah molekul DNA yang berfungsi sebagai wahana atau kendaraan yang akan membawa suatu fragmen DNA masuk ke dalam sel inang dan memungkinkan terjadinya replikasi dan ekspresi fragmen DNA asing tersebut. Vektor yang dapat digunakan pada sel inang prokariot, khususnya E. coli, adalah plasmid, bakteriofag, kosmid, dan fasmid. Sementara itu, vektor YACs dan YEps dapat digunakan pada khamir. Plasmid Ti, baculovirus, SV40, dan retrovirus merupakan vektor-vektor yang dapat digunakan pada sel eukariot tingkat tinggi.


...

Plasmid

Secara umum plasmid dapat didefinisikan sebagai molekul DNA sirkuler untai ganda di luar kromosom yang dapat melakukan replikasi sendiri. Plasmid tersebar luas di antara organisme prokariot dengan ukuran yang bervariasi dari sekitar 1 kb hingga lebih dari 250 kb (1 kb = 1000 pb).
Agar dapat digunakan sebagai vektor kloning, plasmid harus memenuhi syarat-syarat berikut ini:

mempunyai ukuran relatif kecil bila dibandingkan dengan pori dinding sel inang sehingga dapat dengan mudah melintasinya,

mempunyai sekurang-kurangnya dua gen marker yang dapat menandai masuk tidaknya plasmid ke dalam sel inang,

mempunyai tempat pengenalan restriksi sekurang-kurangnya di dalam salah satu marker yang dapat digunakan sebagai tempat penyisipan fragmen DNA, dan

mempunyai titik awal replikasi (ori) sehingga dapat melakukan replikasi di dalam sel inang.


Salah satu contoh plasmid buatan yang banyak digunakan dalam kloning gen adalah pBR322. Plasmid ini dikonstruksi oleh F. Bolivar dan kawan-kawanya pada tahun 1977. Urutan basa lengkapnya telah ditentukan sehingga baik tempat marker maupun pengenalan restriksinya juga telah diketahui. Sayangnya, tempat pengenalan EcoR I, salah satu enzim restriksi yang sangat umum digunakan, terletak di luar marker. Oleh karena salah satu marker akan menjadi tempat penyisipan fragmen DNA asing, maka EcoR I tidak dapat digunakan untuk memotong pBR322 di tempat penyisipan tersebut. Namun, saat ini telah dikonstruksi derivat-derivat pBR322 yang mempunyai tempat pengenalan EcoR I di dalam marker, misalnya plasmid pBR324 dan pBR325 yang masing-masing mempunyai tempat pengenalan EcoR I di dalam gen struktural kolisin dan di dalam gen resisten kloramfenikol.

Gambar 11.1. Plasmid pBR322
ampR = marker resisten ampisilin
tetR = marker resisten tetrasiklin

Misalnya saja kita menyisipkan suatu fragmen DNA pada daerah marker resisten ampisilin dengan memotong daerah ini menggunakan enzim restriksi tertentu selain EcoR I (mengapa harus selain EcoR I?). Plasmid pBR322 yang tersisipi oleh fragmen DNA akan kehilangan sifat resistensinya terhadap ampisilin, tetapi masih mempunyai sifat resistensi terhadap tetrasiklin. Oleh karena itu, ketika plasmid pBR322 rekombinan ini dimasukkan ke dalam sel inangnya, yakni E. coli, bakteri transforman ini tidak mampu tumbuh pada medium yang mengandung ampisilin, tetapi tumbuh pada medium tetrasiklin. Secara alami E. coli tidak mampu tumbuh baik pada medium ampisilin maupun tetrasiklin sehingga sel transforman dapat dengan mudah dibedakan dengan sel nontransforman yang tidak mengandung pBR322 sama sekali. Sementara itu, E. coli transforman yang membawa plasmid pBR322 utuh (religasi) mampu tumbuh pada kedua medium antibiotik tersebut. Jadi, untuk memperoleh sel E. coli transforman yang membawa DNA rekombinan dicari koloni yang hidup di tetrasiklin tetapi mati di ampisilin. Secara teknis pekerjaan ini dilakukan menggunakan transfer koloni atau replica plating (lihat Bab X).
Plasmid yang digunakan pada bakteri gram negatif seperti halnya pBR322 tidak dapat digunakan pada bakteri gram positif. Namun, saat ini telah tersedia plasmid untuk kloning pada bakteri gram positif, misalnya pT127 dan pC194, yang dikonstruksi oleh S.D. Erlich pada tahun 1977 dari bakteri Staphylococcus aureus. Demikian juga, telah ditemukan plasmid untuk kloning pada eukariot, khususnya pada khamir, misalnya yeast integrating plasmids (YIps), yeast episomal plasmids (YEps), yeast replicating plasmids (YRps), dan yeast centromere plasmid (YCps).
Bakteriofag
Bakteriofag adalah virus yang sel inangnya berupa bakteri. Dengan daur hidupnya yang bersifat litik atau lisogenik bakteriofag dapat digunakan sebagai vektor kloning pada sel inang bakteri. Ada beberapa macam bakteriofag yang biasa digunakan sebagai vektor kloning. Dua di antaranya akan dijelaskan berikut ini.

Bakteriofag l

Bakteriofag atau fag l merupakan virus kompleks yang menginfeksi bakteri E. coli. Berkat pengetahuan yang memadai tentang fag ini, kita dapat memanfaatkannya sebagai vektor kloning semenjak masa-masa awal perkembangan rekayasa genetika. DNA l yang diisolasi dari partikel fag ini mempunyai konformasi linier untai ganda dengan panjang 48,5 kb. Namun, masing-masing ujung fosfatnya berupa untai tunggal sepanjang 12 pb yang komplementer satu sama lain sehingga memungkinkan DNA l untuk berubah konformasinya menjadi sirkuler. Dalam bentuk sirkuler, tempat bergabungnya kedua untai tunggal sepanjang 12 pb tersebut dinamakan kos.
Seluruh urutan basa DNA l telah diketahui. Secara alami terdapat lebih dari satu tempat pengenalan restriksi untuk setiap enzim restriksi yang biasa digunakan. Oleh karena itu, DNA l tipe alami tidak cocok untuk digunakan sebagai vektor kloning. Akan tetapi, saat ini telah banyak dikonstruksi derivat-derivat DNA l yang memenuhi syarat sebagai vektor kloning. Ada dua macam vektor kloning yang berasal dari DNA l, yaitu
vektor insersional, yang dengan mudah dapat disisipi oleh fragmen DNA asing, vektor substitusi, yang untuk membawa fragmen DNA asing harus membuang sebagian atau seluruh urutan basanya yang terdapat di daerah nonesensial dan menggantinya dengan urutan basa fragmen DNA asing tersebut.
Di antara kedua macam vektor l tersebut, vektor substitusi lebih banyak digunakan karena kemampuannya untuk membawa fragmen DNA asing hingga 23 kb. Salah satu contohnya adalah vektor WES, yang mempunyai mutasi pada tiga gen esensial, yaitu gen W, E, dan S. Vektor ini hanya dapat digunakan pada sel inang yang dapat menekan mutasi tersebut.
Cara substitusi fragmen DNA asing pada daerah nonesensial membutuhkan dua tempat pengenalan restriksi untuk setiap enzim restriksi. Jika suatu enzim restrisksi memotong daerah nonesensial di dua tempat berbeda, maka segmen DNA l di antara kedua tempat tersebut akan dibuang untuk selanjutnya digantikan oleh fragmen DNA asing. Jika pembuangan segmen DNA l tidak diikuti oleh substitusi fragmen DNA asing, maka akan terjadi religasi vektor DNA l yang kehilangan sebagian segmen pada daerah nonesensial. Vektor religasi semacam ini tidak akan mampu bertahan di dalam sel inang. Dengan demikian, ada suatu mekanisme seleksi automatis yang dapat membedakan antara sel inang dengan vektor rekombinan dan sel inang dengan vektor religasi.



Gambar 11.2. DNA bakteriofag l
konformasi linier (di luar sel inang)
konformasi sirkuler (di dalam sel inang)

Bakteriofag l mempunyai dua fase daur hidup, yaitu fase litik dan fase lisogenik. Pada fase litik, transfeksi sel inang (istilah transformasi untuk DNA fag) dimulai dengan masuknya DNA l yang berubah konformasinya menjadi sirkuler dan mengalami replikasi secara independen atau tidak bergantung kepada kromosom sel inang. Setelah replikasi menghasilkan sejumlah salinan DNA l sirkuler, masing-masing DNA ini akan melakukan transkripsi dan translasi membentuk protein kapsid (kepala). Selanjutnya, tiap DNA akan dikemas (packaged) dalam kapsid sehingga dihasilkan partikel l baru yang akan keluar dari sel inang untuk menginfeksi sel inang lainnya. Sementara itu, pada fase lisogenik DNA l akan terintegrasi ke dalam kromosom sel inang sehingga replikasinya bergantung kepada kromosom sel inang. Fase lisogenik tidak menimbulkan lisis pada sel inang.
Di dalam medium kultur, sel inang yang mengalami lisis akan membentuk plak (plaque) berupa daerah bening di antara koloni-koloni sel inang yang tumbuh. Oleh karena itu, seleksi vektor rekombinan dapat dilakukan dengan melihat terbentuknya plak tersebut.

Bakteriofag M13

Ada jenis bakteriofag lainnya yang dapat menginfeksi E. coli. Berbeda dengan l yang mempunyai struktur ikosahedral berekor, fag jenis kedua ini mempunyai struktur berupa filamen. Contoh yang paling penting adalah M13, yang mempunyai genom berupa untai tunggal DNA sirkuler sepanjang 6.408 basa. Infeksinya pada sel inang berlangsung melalui pili, suatu penonjolan pada permukaan sitoplasma.
Ketika berada di dalam sel inang genom M13 berubah menjadi untai ganda sirkuler yang dengan cepat akan bereplikasi menghasilkan sekitar 100 salinan. Salinan-salinan ini membentuk untai tunggal sirkuler baru yang kemudian bergerak ke permukaan sel inang. Dengan cara seperti ini DNA M13 akan terselubungi oleh membran dan keluar dari sel inang menjadi partikel fag yang infektif tanpa menyebabkan lisis. Oleh karena fag M13 terselubungi dengan cara pembentukan kuncup pada membran sel inang, maka tidak ada batas ukuran DNA asing yang dapat disisipkan kepadanya. Inilah salah satu keuntungan penggunaan M13 sebagai vektor kloning bila dibandingkan dengan plasmid dan l. Keuntungan lainnya adalah bahwa M13 dapat digunakan untuk sekuensing (penentuan urutan basa) DNA dan mutagenesis tapak terarah (site directed mutagenesis) karena untai tunggal DNA M13 dapat dijadikan cetakan (templat) di dalam kedua proses tersebut.
Meskipun demikian, M13 hanya mempunyai sedikit sekali daerah pada DNAnya yang dapat disisipi oleh DNA asing. Di samping itu, tempat pengenalan restriksinya pun sangat sedikit. Namun, sejumlah derivat M13 telah dikonstruksi untuk mengatasi masalah tersebut.

Kosmid

Kosmid merupakan vektor yang dikonstruksi dengan menggabungkan kos dari DNA l dengan plasmid. Kemampuannya untuk membawa fragmen DNA sepanjang 32 hingga 47 kb menjadikan kosmid lebih menguntungkan daripada fag l dan plasmid.

Fasmid

Selain kosmid, ada kelompok vektor sintetis yang merupakan gabungan antara plasmid dan fag l. Vektor yang dinamakan fasmid ini membawa segmen DNA l yang berisi tempat att. Tempat att digunakan oleh DNA l untuk berintegrasi dengan kromosom sel inang pada fase lisogenik.

Vektor YACs

Seperti halnya kosmid, YACs (yeast artifisial chromosomes atau kromosom buatan dari khamir) dikonstruksi dengan menggabungkan antara DNA plasmid dan segmen tertentu DNA kromosom khamir. Segmen kromosom khamir yang digunakan terdiri atas sekuens telomir, sentromir, dan titik awal replikasi.
YACs dapat membawa fragmen DNA genomik sepanjang lebih dari 1 Mb. Oleh karena itu, YACs dapat digunakan untuk mengklon gen utuh manusia, misalnya gen penyandi cystic fibrosis yang panjangnya 250 kb. Dengan kemampuannya itu YACs sangat berguna dalam pemetaan genom manusia seperti yang dilakukan pada Proyek Genom Manusia.

Vektor YEps

Vektor-vektor untuk keperluan kloning dan ekspresi gen pada Saccharomyces cerevisiae dirancang atas dasar plasmid alami berukuran 2 μm, yang selanjutnya dikenal dengan nama plasmid 2 mikron. Plasmid ini memiliki sekuens DNA sepanjang 6 kb, yang mencakup titik awal replikasi dan dua gen yang terlibat dalam replikasi.
Vektor-vektor yang dirancang atas dasar plasmid 2 mikron disebut YEps (yeast episomal plasmids). Segmen plasmid 2 mikronnya membawa titik awal replikasi, sedangkan segmen kromosom khamirnya membawa suatu gen yang berfungsi sebagai penanda seleksi, misalnya gen LEU2 yang terlibat dalam biosintesis leusin. Meskipun biasanya bereplikasi seperti plasmid pada umumnya, YEps dapat terintegrasi ke dalam kromosom khamir inangnya.

Plasmid Ti Agrobacterium tumefaciens

Sel-sel tumbuhan tidak mengandung plasmid alami yang dapat digunakan sebagai vektor kloning. Akan tetapi, ada suatu bakteri, yaitu Agrobacterium tumefaciens, yang membawa plasmid berukuran 200 kb dan disebut plasmid Ti (tumor inducing atau penyebab tumor). Bakteri A. tumefaciens dapat menginfeksi tanaman dikotil seperti tomat dan tembakau serta tanaman monokotil, khususnya padi. Ketika infeksi berlangsung bagian tertentu plasmid Ti, yang disebut T-DNA, akan terintegrasi ke dalam DNA kromosom tanaman, mengakibatkan terjadinya pertumbuhan sel-sel tanaman yang tidak terkendali. Akibatnya, akan terbentuk tumor atau crown gall.
Plasmid Ti rekombinan dengan suatu gen target yang disisipkan pada daerah T-DNA dapat mengintegrasikan gen tersebut ke dalam DNA tanaman. Gen target ini selanjutnya akan dieskpresikan menggunakan sistem DNA tanaman.
Dalam prakteknya, ukuran plasmid Ti yang begitu besar sangat sulit untuk dimanipulasi. Namun, ternyata apabila bagian T-DNA dipisahkan dari bagian-bagian lain plasmid Ti, integrasi dengan DNA tanaman masih dapat terjadi asalkan T-DNA dan bagian lainnya tersebut masih berada di dalam satu sel bakteri A. tumefaciens. Dengan demikian, manipulasi atau penyisipan fragmen DNA asing hanya dilakukan pada T-DNA dengan cara seperti halnya yang dilakukan pada plasmid E.coli. Selanjutnya, plasmid T-DNA rekombinan yang dihasilkan ditransformasikan ke dalam sel A. tumefaciens yang membawa plasmid Ti tanpa bagian T-DNA. Perbaikan prosedur berikutnya adalah pembuangan gen-gen pembentuk tumor yang terdapat pada T-DNA.

Baculovirus

Baculovirus merupakan virus yang menginfeksi serangga. Salah satu protein penting yang disandi oleh genom virus ini adalah polihedrin, yang akan terakumulasi dalam jumlah sangat besar di dalam nuklei sel-sel serangga yang diinfeksi karena gen tersebut mempunyai promoter yang sangat aktif. Promoter ini dapat digunakan untuk memacu overekspresi gen-gen asing yang diklon ke dalam genom bacilovirus sehingga akan diperoleh produk protein yang sangat banyak jumlahnya di dalam kultur sel-sel serangga yang terinfeksi.

Vektor Kloning pada Mamalia

Vektor untuk melakukan kloning pada sel-sel mamalia juga dikonstruksi atas dasar genom virus. Salah satu di antaranya yang telah cukup lama dikenal adalah SV40, yang menginfeksi berbagai spesies mamalia. Genom SV40 panjangnya hanya 5,2 kb. Genom ini mengalami kesulitan dalam pengepakan (packaging) sehingga pemanfaatan SV40 untuk mentransfer fragmen–fragmen berukuran besar menjadi terbatas.
Retrovirus mempunyai genom berupa RNA untai tunggal yang ditranskripsi balik menjadi DNA untai ganda setelah terjadi infeksi. DNA ini kemudian terintegrasi dengan stabil ke dalam genom sel mamalia inang sehingga retrovirus telah digunakan sebagai vektor dalam terapi gen. Retrovirus mempunyai beberapa promoter yang kuat.


Pengaturan Ekspresi Gen

Mekanisme Pengaturan Ekspresi Gen

Produk-produk gen tertentu seperti protein ribosomal, rRNA, tRNA, RNA polimerase, dan enzim-enzim yang mengatalisis berbagai reaksi metabolisme yang berkaitan dengan fungsi pemeliharaan sel merupakan komponen esensial bagi semua sel. Gen-gen yang menyandi pembentukan produk semacam itu perlu diekspresikan terus-menerus sepanjang umur individu di hampir semua jenis sel tanpa bergantung kepada kondisi lingkungan di sekitarnya. Sementara itu, banyak pula gen lainnya yang ekspresinya sangat ditentukan oleh kondisi lingkungan sehingga mereka hanya akan diekspresikan pada waktu dan di dalam jenis sel tertentu. Untuk gen-gen semacam ini harus ada mekanisme pengaturan ekspresinya.

Pengaturan ekspresi gen dapat terjadi pada berbagai tahap, misalnya transkripsi, prosesing mRNA, atau translasi. Namun, sejumlah data hasil penelitian menunjukkan bahwa pengaturan ekspresi gen, khususnya pada prokariot, paling banyak terjadi pada tahap transkripsi.

Mekanisme pengaturan transkripsi, baik pada prokariot maupun pada eukariot, secara garis besar dapat dibedakan menjadi dua kategori utama, yaitu (1) mekanisme yang melibatkan penyalapadaman (turn on and turn off) ekspresi gen sebagai respon terhadap perubahan kondisi lingkungan dan (2) sirkit ekspresi gen yang telah terprogram (preprogramed circuits). Mekanisme penyalapadaman sangat penting bagi mikroorganisme untuk menyesuaikan diri terhadap perubahan lingkungan yang seringkali terjadi secara tiba-tiba. Sebaliknya, bagi eukariot mekanisme ini nampaknya tidak terlalu penting karena pada organisme ini sel justru cenderung merespon sinyal-sinyal yang datang dari dalam tubuh, dan di sisi lain, sistem sirkulasi akan menjadi penyangga bagi sel terhadap perubahan kondisi lingkungan yang mendadak tersebut. Pada mekanisme sirkit, produk suatu gen akan menekan transkripsi gen itu sendiri dan sekaligus memacu transkripsi gen kedua, produk gen kedua akan menekan transkripsi gen kedua dan memacu transkripsi gen ketiga, demikian seterusnya. Ekspresi gen yang berurutan ini telah terprogram secara genetik sehingga gen-gen tersebut tidak akan dapat diekspresikan di luar urutan. Oleh karena urutan ekspresinya berupa sirkit, maka mekanisme tersebut dinamakan sirkit ekspresi gen.


...

Induksi dan Represi pada Prokariot

Escherichia coli merupakan bakteri yang sering dijadikan model untuk mempelajari berbagai mekanisme genetika molekuler. Bakteri ini secara alami hidup di dalam usus besar manusia dengan memanfaatkan sumber karbon yang umumnya berupa glukosa. Apabila suatu ketika E. coli ditumbuhkan pada medium yang sumber karbonnya bukan glukosa melainkan laktosa, maka enzim pemecah laktosa akan disintesis, sesuatu yang tidak biasa dilakukannya. Untuk itu, gen-gen penyandi berbagai enzim yang terlibat dalam pemanfaatan laktosa akan diekspresikan (turned on). Sebaliknya, dalam keadaan normal, yaitu ketika tersedia glukosa sebagai sumber karbon, maka gen-gen tersebut tidak diekspresikan (turned off). Proses yang terjadi ketika ekspresi gen merupakan respon terhadap keberadaan suatu zat di lingkungannya dikenal sebagai induksi, sedangkan zat atau molekul yang menyebabkan terjadinya induksi disebut sebagai induser. Jadi, dalam contoh ini laktosa merupakan induser.

Induksi secara molekuler terjadi pada tingkat transkripsi. Peristiwa ini berkenaan dengan laju sintesis enzim, bukan dengan aktivitas enzim. Pada pengaktifan enzim suatu molekul kecil akan terikat pada enzim sehingga akan terjadi peningkatan aktivitas enzim tersebut, bukan peningkatan laju sintesisnya.

Selain mempunyai kemampuan untuk memecah suatu molekul (katabolisme), bakteri juga dapat menyintesis (anabolisme) berbagai molekul organik yang diperlukan bagi pertumbuhannya. Sebagai contoh, Salmonella typhimurium mempunyai sejumlah gen yang menyandi enzim-enzim untuk biosintesis triptofan. Dalam medium pertumbuhan yang tidak mengandung triptofan, S. typhimurium akan mengekspresikan (turned on) gen-gen tersebut. Akan tetapi, jika suatu saat ke dalam medium pertumbuhannya ditambahkan triptofan, maka gen-gen tersebut tidak perlu diekspresikan (turned off). Proses pemadaman (turn off) ekspresi gen sebagai respon terhadap keberadaan suatu zat di lingkungannya dinamakan represi, sedangkan zat yang menyebabkan terjadinya represi disebut sebagai korepresor. Jadi, dalam contoh ini triptofan merupakan korepresor.

Seperti halnya induksi, represi juga terjadi pada tahap transkripsi. Represi sering dikacaukan dengan inhibisi umpan balik (feedback inhibition), yaitu penghambatan aktivitas enzim akibat pengikatan produk akhir reaksi yang dikatalisis oleh enzim itu sendiri. Represi tidak menghambat aktivitas enzim, tetapi menekan laju sintesisnya.

Model operon

Mekanisme molekuler induksi dan represi telah dapat dijelaskan menurut model yang diajukan oleh F. Jacob dan J. Monod pada tahun 1961. Menurut model yang dikenal sebagai operon ini ada dua unsur yang mengatur transkripsi gen struktural penyandi enzim, yaitu gen regulator (gen represor) dan operator yang letaknya berdekatan dengan gen-gen struktural yang diaturnya. Gen regulator menyandi pembentukan suatu protein yang dinamakan represor. Pada kondisi tertentu represor akan berikatan dengan operator, menyebabkan terhalangnya transkripsi gen-gen struktural. Hal ini terjadi karena enzim RNA polimerase tidak dapat memasuki promoter yang letaknya berdekatan, atau bahkan tumpang tindih, dengan operator.

Secara keseluruhan setiap operon terdiri atas promoter operon atau promoter bagi gen-gen struktural (PO), operator (O), dan gen-gen struktural (GS). Di luar operon terdapat gen regulator (R) beserta promoternya (PR), molekul protein represor yang dihasilkan oleh gen regulator, dan molekul efektor. Molekul efektor pada induksi adalah induser, sedangkan pada represi adalah korepresor.


Gambar 7.1. Model operon untuk pengaturan ekspresi gen

a) komponen operon b) induksi c) represi

Pada Gambar 7.1 terlihat bahwa terikatnya represor pada operator terjadi dalam keadaan yang berkebalikan antara induksi dan represi. Pada induksi represor secara normal akan berikatan dengan operator sehingga RNA polimerase tidak dapat memasuki promoter operon. Akibatnya, transkripsi gen-gen struktural tidak dapat berlangsung. Namun, dengan terikatnya represor oleh induser, promoter operon menjadi terbuka bagi RNA polimerase sehingga gen-gen struktural dapat ditranskripsi dan selanjutnya ditranslasi. Dengan demikian, gen-gen struktural akan diekspresikan apabila terdapat molekul induser yang mengikat represor.

Operon yang terdiri atas gen-gen yang ekspresinya terinduksi dinamakan operon induksi. Salah satu contohnya adalah operon lac, yang terdiri atas gen-gen penyandi enzim pemecah laktosa seperti telah disebutkan di atas.

Sebaliknya, pada represi secara normal represor tidak berikatan dengan operator sehingga RNA polimerase dapat memasuki promoter operon dan transkripsi gen-gen struktural dapat terjadi. Akan tetapi, dengan adanya korepresor, akan terbentuk kompleks represor-korepresor yang kemudian berikatan dengan operator. Dengan pengikatan ini, RNA polimerase tidak dapat memasuki promoter operon sehingga transkripsi gen-gen struktural menjadi terhalang. Jadi, ekspresi gen-gen struktural akan terepresi apabila terdapat molekul korepresor yang berikatan dengan represor.

Gen-gen yang ekspresinya dapat terepresi merupakan komponen operon yang dinamakan operon represi. Operon trp, yang terdiri atas gen-gen penyandi enzim untuk biosintesis triptofan merupakan contoh operon represi.

Pengaturan Ekspresi Gen pada Eukariot

Hingga sekarang kita baru sedikit sekali mengetahui mekanisme pengaturan ekspresi gen pada eukariot. Namun, kita telah mengetahui bahwa pada eukariot tingkat tinggi gen-gen yang berbeda akan ditranskripsi pada jenis sel yang berbeda. Hal ini menunjukkan bahwa mekanisme pengaturan pada tahap transkripsi, dan juga prosesing mRNA, memegang peran yang sangat penting dalam proses diferensiasi sel.

Operon, kalau pun ada, nampaknya tidak begitu penting pada eukariot. Hanya pada eukariot tingkat rendah seperti jamur dapat ditemukan satuan-satuan operon atau mirip operon. Semua mRNA pada eukariot tingkat tinggi adalah monosistronik, yaitu hanya membawa urutan sebuah gen struktural. Transkrip primer yang adakalanya menyerupai polisistronik pun akan diproses menjadi mRNA yang monosistronik.

Selain itu, terindikasi juga bahwa diferensiasi sel sedikit banyak melibatkan ekspresi seperangkat gen yang telah terprogram (preprogramed). Berbagai macam sinyal seperti molekul-molekul sitoplasmik, hormon, dan rangsangan dari lingkungan memicu dimulainya pembacaan program-program dengan urutan tertentu pada waktu dan tempat yang tepat selama perkembangan individu. Bukti paling nyata mengenai adanya keharusan urutan pembacaan program pada waktu dan tempat tertentu dapat dilihat pada kasus mutasi yang terjadi pada lalat Drosophila, misalnya munculnya sayap di kepala di tempat yang seharusnya untuk mata. Dengan mempelajari mutasi-mutasi semacam ini diharapkan akan diperoleh pengetahuan tentang mekanisme pengaturan ekspresi gen selama perkembangan normal individu.

Pada eukariot tingkat tinggi kurang dari 10 persen gen yang terdapat di dalam seluruh genom akan terepresentasikan urutan basanya di antara populasi mRNA yang telah mengalami prosesing. Sebagai contoh, hanya ada dua hingga lima persen urutan DNA mencit yang akan terepresentasikan pada mRNA di dalam sel-sel hatinya. Demikian pula, mRNA di dalam sel-sel otak katak Xenopus hanya merepresentasikan delapan persen urutan DNAnya. Jadi, sebagian besar urutan basa DNA di dalam genom eukariot tingkat tinggi tidak terepresentasikan di antara populasi mRNA yang ada di dalam sel atau jaringan tertentu. Dengan perkataan lain, molekul mRNA yang dihasilkan dari perangkat gen yang berbeda akan dijumpai di dalam sel atau jaringan yang berbeda pula.

Dosis gen dan amplifikasi gen

Kebutuhan akan produk-produk gen pada eukariot dapat sangat bervariasi. Beberapa produk gen dibutuhkan dalam jumlah yang jauh lebih besar daripada produk gen lainnya sehingga terdapat nisbah kebutuhan di antara produk-produk gen yang berbeda. Untuk memenuhi nisbah kebutuhan ini antara lain dapat ditempuh melalui dosis gen. Katakanlah, ada gen A dan gen B yang ditranskripsi dan ditranslasi dengan efisiensi yang sama. Produk gen A dapat 20 kali lebih banyak daripada produk gen B apabila terdapat 20 salinan (kopi) gen A untuk setiap salinan gen B. Contoh yang nyata dapat dilihat pada gen-gen penyandi histon. Untuk menyintesis histon dalam jumlah besar yang dibutuhkan dalam pembentukan kromatin, kebanyakan sel mempunyai beratus-ratus kali salinan gen histon daripada jumlah salinan gen yang diperlukan untuk replikasi DNA.

Salah satu pengaruh dosis gen adalah amplifikasi gen, yaitu peningkatan jumlah gen sebagai respon terhadap sinyal tertentu. Sebagai contoh, amplifikasi gen terjadi selama perkembangan oosit katak Xenopus laevis. Pembentukan oosit dari prekursornya (oogonium) merupakan proses kompleks yang membutuhkan sejumlah besar sintesis protein. Untuk itu dibutuhkan sejumlah besar ribosom. Kita mengetahui bahwa ribosom antara lain terdiri atas molekul-molekul rRNA. Padahal, sel-sel prekursor tidak mempunyai gen penyandi rRNA dalam jumlah yang mencukupi untuk sintesis molekul tersebut dalam waktu yang relatif singkat. Namun, sejalan dengan perkembangan oosit terjadi peningkatan jumlah gen rRNA hingga 4000 kali sehingga dari sebanyak 600 gen yang ada pada prekursor akan diperoleh sekitar dua juta gen setelah amplifikasi. Jika sebelum amplifikasi ke-600 gen rRNA berada di dalam satu segmen DNA linier, maka selama dan setelah amplifikasi gen tersebut akan berada di dalam gulungan-gulungan kecil yang mengalami replikasi. Molekul rRNA tidak diperlukan lagi ketika oosit telah matang hingga saat terjadinya fertilisasi. Oleh karena itu, gen rRNA yang telah begitu banyak disalin kemudian didegradasi kembali oleh berbagai enzim intrasel.

Jika waktu yang tersedia untuk melakukan sintesis sejumlah besar protein cukup banyak, amplifikasi gen sebenarnya tidak perlu dilakukan. Cara lain untuk mengatasi kebutuhan protein tersebut adalah dengan meningkatkan masa hidup mRNA (lihat bagian pengaturan translasi).

Pengaturan transkripsi

Berdasarkan atas banyaknya salinan di dalam tiap sel, molekul mRNA dapat dibagi menjadi tiga kelompok, yaitu (1) mRNA salinan tunggal (single copy), (2) mRNA semiprevalen dengan jumlah salinan lebih dari satu hingga beberapa ratus per sel, dan (3) mRNA superprevalen dengan jumlah salinan beberapa ratus hingga beberapa ribu per sel. Molekul mRNA salinan tunggal dan semiprevalen masing-masing menyandi enzim dan protein struktural. Sementara itu, mRNA superprevalen biasanya dihasilkan sejalan dengan terjadinya perubahan di dalam suatu tahap perkembangan organisme eukariot. Sebagai contoh, sel-sel eritroblas di dalam sumsum tulang belakang mempunyai sejumlah besar mRNA yang dapat ditranslasi menjadi globin matang. Di sisi lain, hanya sedikit sekali atau bahkan tidak ada globin yang dihasilkan oleh sel-sel prekursor yang belum berkembang menjadi eritroblas. Dengan demikian, kita dapat memastikan adanya suatu mekanisme pengaturan ekspresi gen penyandi mRNA superprevalen pada tahap transkripsi eukariot meskipun hingga kini belum terlalu banyak rincian prosesnya yang dapat diungkapkan.

Salah satu regulator yang diketahui berperan dalam transkripsi eukariot adalah hormon, molekul protein kecil yang dibawa dari sel tertentu menuju ke sel target. Mekanisme kerja hormon dalam mengatur transkripsi eukariot lebih kurang dapat disetarakan dengan induksi pada prokariot. Namun, penetrasi hormon ke dalam sel target dan pengangkutannya ke dalam nukleus merupakan proses yang jauh lebih rumit bila dibandingkan dengan induksi oleh laktosa pada E. coli.

Secara garis besar pengaturan transkripsi oleh hormon dimulai dengan masuknya hormon ke dalam sel target melewati membran sel, yang kemudian ditangkap oleh reseptor khusus yang terdapat di dalam sitoplasma sehingga terbentuk kompleks hormon-reseptor. Setelah kompleks ini terbentuk biasanya reseptor akan mengalami modifikasi struktur kimia. Kompleks hormon-reseptor yang termodifikasi kemudian menembus dinding nukleus untuk memasuki nukleus. Proses selanjutnya belum banyak diketahui, tetapi rupanya di dalam nukleus kompleks tersebut, atau mungkin hormonnya saja, akan mengalami salah satu di antara beberapa peristiwa, yaitu (1) pengikatan langsung pada DNA, (2) pengikatan pada suatu protein efektor, (3) aktivasi protein yang terikat DNA, (4) inaktivasi represor, dan (5) perubahan struktur kromatin agar DNA terbuka bagi enzim RNA polimerase.

Contoh induksi transkripsi oleh hormon antara lain dapat dilihat pada stimulasi sintesis ovalbumin pada saluran telur (oviduktus) ayam oleh hormon kelamin estrogen. Jika ayam disuntik dengan estrogen, jaringan-jaringan oviduktus akan memberikan respon berupa sintesis mRNA untuk ovalbumin. Sintesis ini akan terus berlanjut selama estrogen diberikan, dan hanya sel-sel oviduktus yang akan menyintesis mRNA tersebut. Hal ini karena sel-sel atau jaringan lainnya tidak mempunyai reseptor hormon estrogen di dalam sitoplasmanya.

Pengaturan pada tahap prosesing mRNA

Dua jenis sel yang berbeda dapat membuat protein yang sama tetapi dalam jumlah yang berbeda meskipun transkripsi di dalam kedua sel tersebut terjadi pada gen yang sama. Fenomena ini seringkali berkaitan dengan adanya molekul-molekul mRNA yang berbeda, yang akan ditranslasi dengan efisiensi berbeda pula.

Pada tikus, misalnya, ditemukan bahwa perbedaan sintesis enzim α-amilase oleh berbagai mRNA yang berasal dari gen yang sama dapat terjadi karena adanya perbedaan pola pembuangan intron. Kelenjar ludah menghasilkan α-amilase lebih banyak daripada yang dihasilkan oleh jaringan hati meskipun gen yang ditranskripsi sama. Jadi, dalam hal ini transkrip primernya sebenarnya sama, tetapi kemudian ada perbedaan mekanisme prosesing, khususnya pada penyatuan (splicing) mRNA.

Pengaturan translasi

Berbeda dengan translasi mRNA pada prokariot yang terjadi dalam jumlah yang lebih kurang sama, pada eukariot ada mekanisme pengaturan translasi. Macam-macam pengaturan tersebut adalah (1) kondisi bahwa mRNA tidak akan ditranslasi sama sekali sebelum datangnya suatu sinyal, (2) pengaturan umur (lifetime) molekul mRNA, dan (3) pengaturan laju seluruh sintesis protein.

Telur yang tidak dibuahi secara biologi bersifat statis. Akan tetapi, begitu fertilisasi terjadi, sejumlah protein akan disintesis. Hal ini menunjukkan bahwa di dalam sel telur yang belum dibuahi akan dijumpai sejumlah mRNA yang menantikan datangnya sinyal untuk translasi. Sinyal tersebut tidak lain adalah fertilisasi oleh spermatozoon, sedangkan molekul mRNA yang belum ditranslasi itu dinamakan mRNA tersembunyi (masked mRNA).

Pengaturan umur mRNA juga dijumpai pada telur yang belum dibuahi. Sel telur ini akan mempertahankan diri untuk tidak mengalami pertumbuhan atau perkembangan. Dengan demikian, laju sintesis protein menjadi sangat rendah. Namun, hal ini bukan akibat kurangnya pasokan mRNA, melainkan karena terbatasnya ketersediaan suatu unsur yang dinamakan faktor rekrutmen. Hingga kini belum diketahui hakekat unsur tersebut, tetapi rupanya berperan dalam pembentukan kompleks ribosom-mRNA.

Sintesis beberapa protein tertentu diatur oleh aktivitas protein itu sendiri terhadap mRNA. Sebagai contoh, konsentrasi suatu jenis molekul antibodi dipertahankan konstan oleh mekanisme inhibisi atau penghambatan diri dalam proses translasi. Jadi, molekul antibodi tersebut berikatan secara khusus dengan molekul mRNA yang menyandinya sehingga inisiasi translasi akan terhambat.

Sintesis beberapa protein dari satu segmen DNA

Pada prokariot terdapat mRNA polisistronik yang menyandi semua produk gen. Sebaliknya, pada eukariot tidak pernah dijumpai mRNA polisistronik, tetapi ada kondisi yang dapat disetarakan dengannya, yakni sintesis poliprotein. Poliprotein adalah polipeptida berukuran besar yang setelah berakhirnya translasi akan terpotong-potong untuk menghasilkan sejumlah molekul protein yang utuh. Tiap protein ini dapat dilihat sebagai produk satu gen tunggal. Dalam sistem semacam itu urutan penyandi pada masing-masing gen tidak saling dipisahkan oleh kodon stop dan kodon awal, tetapi dipisahkan oleh urutan asam amino tertentu yang dikenal sebagai tempat pemotongan (cleavage sites) oleh enzim protease tertentu. Tempat-tempat pemotongan ini tidak akan berfungsi serempak, tetapi bergantian mengikuti suatu urutan.



Friends

About Me

My photo
juzt a simple man with his three angels....

who's online???

Site Meter